Temperature and Composition Dependence of the Densities, Viscosities, and Speeds of Sound of Binary Liquid Mixtures of 1-Butanol with Hexadecane and Squalane

Gyan P. Dubey* and Monika Sharma

Department of Chemistry, Kurukshetra University, Kurukshetra 136 119, India

Excess molar volumes, V_m^{E} , viscosity deviations, $\Delta \eta$, deviations in speed of sound, Δu , and isentropic compressibility, $\Delta \kappa_s$, for the binary mixtures of 1-butanol, C₄H₉OH with hexadecane, C₁₆H₃₄, and squalane (2,4,6,10,15,19,23-hexamethylteracosane), C₃₀H₆₂, at T = (298.15, 303.15, and 308.15) K and at atmospheric pressure were derived from experimental density, ρ , viscosity, η , and speed of sound, u, data. The calculated excess and deviation functions were further fitted to the polynomial relation to estimate the coefficients and standard errors. The Prigogine–Flory–Patterson (PFP) theory has been used to explain V_m^{E} , whereas PFP theory with the van der Waals (vdW) potential energy model has also been used for theoretical estimation of u and κ_s .

Introduction

In the present communication, an attempt has been made to generate data on density, viscosity, and speed of sound for the binary mixtures of 1-butanol, C_4H_9OH with hexadecane, $C_{16}H_{34}$, and squalane, $C_{30}H_{62}$, at T = (298.15, 303.15, and 308.15) K and at atmospheric pressure. From the experimental results, excess molar volumes, V_m^{E} , viscosity deviations, $\Delta \eta$, deviations in speed of sound, Δu , and isentropic compressibility, $\Delta \kappa_s$, have been evaluated to provide additional information on molecular interactions.

The previous investigation reveals that the excess thermodynamic properties of binary mixtures of $C_{16}H_{34}$ and $C_{30}H_{62}$ with hydrocarbons have been reported in several papers.^{1–10} However, the mixing properties in 1-alkanol + $C_{16}H_{34}$, or + $C_{30}H_{62}$ are not well-known. As far as we know, very little literature^{11–14} is available about the binary mixtures containing alkanols and $C_{16}H_{34}$, or $C_{30}H_{62}$. To our knowledge, no experimental values of ρ , η , and u have been reported in the literature for the binary mixtures of C_4H_9OH with $C_{16}H_{34}$, or $C_{30}H_{62}$ at different temperatures.

Experimental Section

Materials. The analytical grade C_4H_9OH was supplied by S.D.Fine Chemicals Ltd., whereas $C_{16}H_{34}$ was a Hi-media product and $C_{30}H_{62}$ was purchased from Acros. The stated purity is as follows: C_4H_9OH (99.5 %), $C_{16}H_{34}$ (99 %), and $C_{30}H_{62}$ (99 %). The density, ρ , viscosity, η , and speed of sound, u, data of pure components are reported in Table 1 along with literature data.^{6,9,15–29} The mole fraction of each mixture was obtained with an uncertainty of $\pm 1 \cdot 10^{-4}$ from the measured apparent masses of the components.³⁰

Apparatus and Procedure. Densities, ρ , and speeds of sound, u, were measured using a digital vibrating tube density and speed of sound analyzer (Anton Paar DSA 5000) with a proportional temperature controller that kept the samples at the required temperature with an accuracy of 0.001 K. The apparatus was calibrated at the working temperatures with double-distilled water^{31,32} and dry air. The uncertainty reported in density

* To whom correspondence should be addressed. E-mail: gyan.dubey@ rediffmail.com.

measurements is $\pm 2 \cdot 10^{-3}$ kg·m⁻³ and in speed of sound is ± 0.1 m·s⁻¹. More details of calibration and procedures can be found elsewhere.³⁰

Viscosities, η , of pure liquids and binary mixtures at all working temperatures and atmospheric pressures were determined with a modified Ubbelohde suspended-level viscometer. The viscometer was calibrated at all working temperatures before measurements. The details have been given in our earlier papers.^{30,33,34} The uncertainty in η measurements is \pm 0.003 mPa·s.

Before the measurements began, the experimental technique was checked by determining $V_{\rm m}^{\rm E}$ and η of the mixture ($x_1C_6H_{12} + x_2C_6H_{14}$) at the temperatures (298.15, 303.15, and 308.15) K and u of the mixtures ($x_1C_6H_{11}CH_3 + x_2C_3H_7OH$) at (298.15, 303.15, and 308.15) K.^{35,36} These data are compared well in general.

Results and Discussion

Density, ρ , speed of sound, u, excess molar volumes, $V_{\rm m}^{\rm E}$, deviation in speed of sound, Δu , and isentropic compressibility, $\kappa_{\rm s}$, determined by means of the Laplace equation ($\kappa_{\rm s} = \rho^{-1}u^{-2}$), and deviation in isentropic compressibility, $\Delta \kappa_{\rm s}$, at (298.15, 303.15, and 308.15) K for (C₄H₉OH + C₁₆H₃₄) and (C₄H₉OH + C₃₀H₆₂) are reported in Tables 2 and 3, respectively. The uncertainties in the derived parameters such as $V_{\rm m}^{\rm E}$, Δu , and $\Delta \kappa_{\rm s}$ due to the estimated uncertainty in ρ ($\pm 2 \cdot 10^{-3}$ kg·m⁻³) and u ($\pm 0.1 \text{ m} \cdot \text{s}^{-1}$) are $\pm 0.0007 \cdot 10^{-6} \text{ m}^3 \cdot \text{mol}^{-1}$, $\pm 0.1 \text{ m} \cdot \text{s}^{-1}$ and $\pm 0.1 \text{ m} \cdot \text{s}^{-1}$, respectively.

Excess molar volumes, deviations in speed of sound, and deviations in isentropic compressibility were derived, respectively, from

$$V_{\rm m}^{\rm E} = \sum_{i=1}^{2} x_i M_i (\rho^{-1} - \rho_i^{-1})$$
(1)

$$\Delta u = u - \sum_{i=1}^{2} \varphi_i u_i \tag{2}$$

$$\Delta \kappa_{\rm s} = \kappa_{\rm s} - \sum_{i=1}^{2} \varphi_i \kappa_{{\rm s},i} \tag{3}$$

where ρ_i , u_i , and $\kappa_{s,i}$ are the density, speed of sound, and isentropic compressibility of the pure component and ρ , u, and

Table 1. Comparison of Experimental Density, ρ , Viscosity, η , and Speed of Sound, u, of Pure Liquids with Literature Data

		$\rho 10^{-3}$	kg∙m ⁻³	η/r	nPa•s	u/n	n•s ⁻¹
components	T/K	exptl	lit.	exptl	lit.	exptl	lit.
C ₄ H ₉ OH	298.15	0.805907	0.80589^{15}	2.573	2.57116,17	1240.5	1240.618
. /	303.15	0.803155	0.8022^{19}	2.275	2.276^{20}	1226.5	1223.0^{21}
	308.15	0.799249	0.79804^{22}	1.981	1.981 ^{23,24}	1209.8	1208.0^{21}
C ₁₆ H ₃₄	298.15	0.770456	0.77046^{25}	3.041	3.052^{26}	1338.6	1338.0 ⁹
10 51	303.15	0.766981	0.76655 ⁹	2.706	-	1320.0	1320.0 ²⁷
	308.15	0.763520	0.76312 ⁹	2.409	2.381^{15}	1301.7	1301.0 ⁹
			0.7637^{28}				
$C_{30}H_{62}$	298.15	0.805122	0.80513 ⁶	28.257	28.254^{6}	1381.9	-
	303.15	0.801912	0.80188^{15}	22.087	-	1364.1	-
	308.15	0.798709	-	17.774	-	1346.5	-

Table 2. Density, ρ , Excess Molar Volume, $V_{\rm m}^{\rm E}$, Speed of Sound, u, Deviation in Speed of Sound, Δu , Isentropic Compressibility, $\kappa_{\rm s}$ and Deviation in Isentropic Compressibility, $\Delta \kappa_{\rm s}$, for $(x_1C_4H_9OH + x_2C_{16}H_{34})$ at Several Temperatures

Table 3. Density, ρ , Excess Molar Volume, $V_{\rm m}^{\rm E}$, Speed of Sound, u, Deviation in Speed of Sound, Δu , Isentropic Compressibility, $\kappa_{\rm s}$, and Deviation in Isentropic Compressibility, $\Delta \kappa_{\rm s}$, for $(x_1C_4H_9OH + x_2C_{30}H_{62})$ at Several Temperatures

	$\rho \cdot 10^{-3}$	$V_{\rm m}{}^{\rm E} \cdot 10^6$	и	Δu	Ks	$\Delta \kappa_{\rm s}$		$\rho \cdot 10^{-3}$	$V^{\rm E}_{\rm m} \cdot 10^6$	и	Δu	Ks	$\Delta \kappa_{\rm s}$
x_1	$kg \cdot m^{-3}$	$m^3 \cdot mol^{-1}$	$m \cdot s^{-1}$	$m \cdot s^{-1}$	TPa^{-1}	TPa^{-1}	x_1	$kg \cdot m^{-3}$	$m^3 \cdot mol^{-1}$	$m \cdot s^{-1}$	$m \cdot s^{-1}$	TPa^{-1}	TPa^{-1}
		29	8.15 K						29	8.15 K			
0.0000	0.770456	0.0000	1338.6	0.0	724.3	0.0	0.0000	0.805122	0.0000	1381.9	0.0	650.4	0.0
0.0899	0.770953	0.2024	1332.4	-3.3	730.7	3.9	0.0451	0.804881	0.1554	1379.5	-1.2	652.8	1.1
0.1048	0.771053	0.2320	1331.2	-3.9	731.8	4.6	0.1077	0.804649	0.2909	1376.1	-2.8	656.3	2.6
0.1516	0.771517	0.2786	1328.2	-5.2	734.7	6.0	0.1346	0.804573	0.3306	1374.8	-3.3	657.6	3.0
0.2017	0.772074	0.3212	1324.9	-6.5	737.9	7.5	0.1888	0.804447	0.3889	1371.7	-4.6	660.6	4.1
0.2494	0.772705	0.3435	1321.9	-7.5	740.6	8.6	0.2231	0.804377	0.4169	1369.7	-5.4	662.6	4.7
0.3382	0.774083	0.3674	1315.8	-9.3	746.2	10.6	0.3059	0.804273	0.4566	1365.1	-6.7	667.2	5.6
0.4147	0.775524	0.3701	1310.6	-10.2	750.7	11.5	0.4052	0.804097	0.4821	1358.8	-7.9	673.5	6.5
0.5057	0.777651	0.3458	1303.9	-10.9	756.3	12.1	0.5039	0.803949	0.4930	1350.9	-9.6	681.6	7.6
0.5845	0.779950	0.3026	1297.6	-11.0	761.5	12.0	0.6118	0.803817	0.4773	1340.5	-10.8	692.3	8.1
0.6980	0.784249	0.2118	1287.4	-10.0	769.4	10.6	0.7056	0.803732	0.4430	1328.8	-11.3	704.7	8.1
0.7945	0.789246	0.1046	1276.8	-8.1	777.2	7.9	0.7998	0.803836	0.3577	1312.5	-11.2	722.2	7.6
0.8497	0.792847	0.0398	1269.5	-6.4	782.6	5.8	0.8546	0.803989	0.2951	1299.5	-10.7	736.5	7.0
0.8963	0.796346	-0.0012	1262.7	-4.3	787.6	3.4	0.9035	0.804336	0.2117	1284.3	-9.7	753.7	6.4
0.9530	0.801232	-0.0192	1252.3	-1.5	795.8	0.6	0.9669	0.805126	0.0861	1258.5	-5.1	784.2	3.3
1.0000	0.805907	0.0000	1240.5	0.0	806.37	0.0	1.0000	0.805907	0.0000	1240.5	0.0	806.4	0.0
		30	3.15 K						30	3.15 K			
0.0000	0.766981	0.0000	1320.0	0.0	748.3	0.0	0.0000	0.801912	0.0000	1364.1	0.0	670.2	0.0
0.0899	0.767402	0.2391	1313.4	-3.9	755.5	4.8	0.0451	0.801658	0.1673	1361.7	-1.2	672.7	1.2
0.1048	0.767499	0.2710	1312.2	-4.5	756.7	5.6	0.1077	0.801402	0.3211	1358.3	-2.9	676.3	2.9
0.1516	0.767916	0.3371	1309.2	-5.9	759.8	7.4	0.1346	0.801318	0.3667	1356.5	-3.6	678.2	3.8
0.2017	0.768482	0.3795	1305.8	-7.4	763.2	9.1	0.1888	0.801160	0.4449	1353.8	-4.9	681.1	4.7
0.2494	0.769093	0.4108	1302.9	-8.3	765.9	10.2	0.2231	0.801070	0.4841	1351.8	-5.7	683.2	5.4
0.3382	0.770439	0.4484	1296.9	-10.3	771.8	12.6	0.3059	0.800898	0.5429	1347.1	-7.1	688.1	6.6
0.4147	0.771883	0.4531	1291.6	-11.5	776.7	13.9	0.4052	0.800714	0.5832	1340.8	-8.6	694.7	7.7
0.5057	0.773952	0.4465	1285.5	-12.0	781.9	14.4	0.5039	0.800528	0.6048	1332.6	-10.7	703.5	9.5
0.5845	0.776223	0.4110	1279.2	-12.2	787.3	14.7	0.6118	0.800347	0.5983	1322.5	-11.8	714.4	10.1
0.6980	0.780452	0.3349	1269.2	-11.6	795.4	13.8	0.7056	0.800179	0.5784	1310.9	-12.5	727.3	10.5
0.7945	0.785434	0.2289	1258.5	-10.4	803.9	12.2	0.7998	0.800194	0.4998	1294.8	-12.7	745.4	10.4
0.8497	0.789093	0.1540	1251.4	-8.9	809.3	10.3	0.8546	0.800335	0.4290	1281.8	-12.5	760.4	10.4
0.8963	0.792717	0.0952	1244.8	-6.9	814.2	7.9	0.9035	0.800708	0.3313	1266.8	-11.9	778.3	10.3
0.9530	0.797973	0.0322	1235.8	-3.4	820.6	3.7	0.9669	0.801896	0.1404	1241.4	-7.6	809.2	7.2
1.0000	0.803155	0.0000	1226.5	0.0	827.7	0.0	1.0000	0.803155	0.0000	1226.5	0.0	827.7	0.0
		30	8.15 K						30	8.15 K			
0.0000	0.763520	0.0000	1301.7	0.0	772.9	0.0	0.0000	0.798709	0.0000	1346.5	0.0	690.6	0.0
0.0899	0.763863	0.2650	1294.9	-4.0	780.7	5.3	0.0451	0.798397	0.2020	1343.0	-1.4	694.4	2.5
0.1048	0.763961	0.2957	1293.8	-4.7	782.0	6.2	0.1077	0.798084	0.3845	1340.2	-3.0	697.6	3.7
0.1516	0.764360	0.3652	1290.3	-6.5	785.8	8.6	0.1346	0.797991	0.4319	1338.9	-3.9	698.9	4.1
0.2017	0.764874	0.4216	1287.3	-7.7	788.9	10.1	0.1888	0.797826	0.5065	1335.9	-5.2	702.3	5.3
0.2494	0.765462	0.4561	1284.4	-8.7	791.9	11.4	0.2231	0.797731	0.5436	1333.9	-5.9	704.4	6.0
0.3382	0.766796	0.4889	1278.2	-10.8	798.2	13.9	0.3059	0.797543	0.5979	1329.3	-7.4	709.6	7.3
0.4147	0.768201	0.4966	1273.1	-11.9	803.1	15.3	0.4052	0.797320	0.6395	1322.8	-9.1	716.8	8.7
0.5057	0.770240	0.4873	1266.9	-12.5	808.9	16.1	0.5039	0.797098	0.6569	1314.8	-11.1	725.7	10.4
0.5845	0.772472	0.4509	1260.9	-12.6	814.1	16.2	0.6118	0.796857	0.6479	1304.6	-12.3	737.3	11.2
0.6980	0.776653	0.3688	1251.1	-12.0	822.6	15.3	0.7056	0.796621	0.6244	1293.1	-13.0	750.8	11.4
0.7945	0.781597	0.2545	1240.6	-10.5	831.3	13.5	0.7998	0.796558	0.5368	1277.1	-13.1	769.8	11.6
0.8497	0.785172	0.1836	1233.7	-9.3	836.8	11.6	0.8546	0.796660	0.4555	1264.2	-12.9	785.4	11.5
0.8963	0.788760	0.1212	1227.4	-7.2	841.6	8.8	0.9035	0.796979	0.3495	1249.1	-12.4	804.2	11.5
0.9530	0.794054	0.0422	1218.5	-3.8	848.3	4.5	0.9669	0.798060	0.1478	1224.4	-7.7	835.8	7.8
1.0000	0.799249	0.0000	1209.8	0.0	854.9	0.0	1.0000	0.799249	0.0000	1209.8	0.0	854.9	0.0

 κ_s denote corresponding mixture properties. x_i is the mole fraction, and φ_i is the volume fraction for the pure component.

The viscosity deviations are calculated from their linear dependence by using the relation

$$\Delta \eta = \eta - \sum_{i=1}^{2} x_i \eta_i \tag{4}$$

where η and η_i are the viscosity of the mixture and pure component, respectively. The $\Delta \eta$ values are given in Table 4, and the uncertainty in $\Delta \eta$ is ± 0.003 mPa·s. The experimental results were fitted in the Redlich–Kister polynomial equation³⁷

$$Y^{\rm E} = x_1 x_2 \sum_{i=0}^{m-1} A_i (1 - 2x_1)^i$$
(5)

where Y^{E} is any excess property or deviation; A_i is the polynomial coefficient; and *m* is the polynomial degree. When $Y^{\text{E}} (= V_{\text{m}}^{\text{E}}, \Delta \eta)$, the composition is taken as mole fraction x_i , and for $Y^{\text{E}} (= \Delta u, \Delta \kappa_{\text{s}})$, the volume fraction φ_i is used. The standard deviation (σ) was calculated using

$$\sigma = \left[\sum \left(Y_{\text{exptl}}^{\text{E}} - Y_{\text{calcd}}^{\text{E}}\right) / (n-m)\right]^{1/2}$$
(6)

where *n* is the number of experimental data points. The coefficients A_i along with standard deviation (σ) are reported in Table 5.

Figure 1a, b depicts the variation of V_m^{E} with composition for (C₄H₉OH + C₁₆H₃₄) and (C₄H₉OH + C₃₀H₆₂), respectively. Both the systems show positive V_m^{E} values and also a positive $(\delta V_m^{E}/\delta T)_P$. The V_m^{E} values are more positive for (C₄H₉OH + C₃₀H₆₂) as compared to (C₄H₉OH + C₁₆H₃₄) due to the increasing chain length of alkane molecules. The observed positive V_m^{E} values can be interpreted as a result of disruption

Table 4. Viscosity, η , and Viscosity Deviation, $\Delta \eta$, for the Binary Mixtures of $(x_1C_4H_9OH + x_2C_{16}H_{34})$ and $(x_1C_4H_9OH + x_2C_{30}H_{62})$ at Several Temperatures

	T = 29	98.15 K	T = 30)3.15 K	T = 308.15 K	
	η	$\Delta \eta$	η	$\Delta \eta$	η	$\Delta \eta$
x_1	mPa•s	mPa•s	mPa•s	mPa•s	mPa•s	mPa•s
		x_1C_4H	$I_9 OH + x_2$	C ₁₆ H ₃₄		
0.0000	3.041	0.000	2.706	0.000	2.409	0.000
0.0899	2.957	-0.042	2.600	-0.067	2.302	-0.068
0.1048	2.937	-0.055	2.582	-0.079	2.287	-0.076
0.1516	2.899	-0.071	2.546	-0.094	2.254	-0.090
0.2017	2.846	-0.100	2.515	-0.104	2.223	-0.099
0.2494	2.811	-0.113	2.478	-0.121	2.189	-0.112
0.3382	2.753	-0.129	2.432	-0.128	2.146	-0.118
0.4147	2.704	-0.143	2.394	-0.134	2.112	-0.120
0.5057	2.665	-0.139	2.344	-0.144	2.068	-0.125
0.5845	2.635	-0.133	2.306	-0.148	2.029	-0.130
0.6980	2.594	-0.121	2.256	-0.149	1.990	-0.120
0.7945	2.568	-0.101	2.223	-0.140	1.960	-0.109
0.8497	2.558	-0.085	2.218	-0.121	1.953	-0.091
0.8963	2.551	-0.070	2.219	-0.101	1.948	-0.078
0.9530	2.556	-0.039	2.228	-0.067	1.953	-0.048
1.0000	2.573	0.000	2.275	0.000	1.981	0.000
		x_1C_4H	$x_{9}OH + x_{2}OH + x_{2$	C30H62		
0.0000	28.257	0.000	22.087	0.000	17.774	0.000
0.0451	26.655	-0.444	20.877	-0.316	16.806	-0.256
0.1077	24.689	-0.802	19.417	-0.536	15.620	-0.453
0.1346	23.925	-0.875	18.855	-0.565	15.162	-0.486
0.1888	22.478	-0.930	17.780	-0.566	14.294	-0.498
0.2231	21.622	-0.905	17.138	-0.529	13.789	-0.462
0.3059	19.666	-0.735	15.643	-0.383	12.617	-0.326
0.4052	17.395	-0.455	13.900	-0.159	11.385	0.010
0.5039	15.106	-0.209	12.136	0.032	9.903	0.087
0.6118	12.474	-0.069	10.119	0.153	8.307	0.195
0.7056	10.056	-0.078	8.276	0.169	6.824	0.194
0.7998	7.573	-0.142	6.348	0.107	5.267	0.124
0.8546	6.128	-0.180	5.200	0.045	4.344	0.067
0.9035	4.873	-0.179	4.186	-0.001	3.527	0.022
0.9669	3.325	-0.098	2.912	-0.018	2.497	-0.007
1.0000	2.573	0.000	2.275	0.000	1.981	0.000

Figure 1. Excess molar volumes, $V_{\rm m}^{\rm E}$, at **II**, 298.15 K; **•**, 303.15 K; and **A**, 308.15 K for the binary mixtures of $x_1C_4H_9OH + x_2C_nH_{2n+1}$: (a) n = 16 and (b) n = 30. The solid curves have been derived from eq 5, and dotted (-----) curves are from the PFP theory.

of alkanol multimers through the breaking of H-bonds since the multimers tend to have a smaller volume than the sum of their component parts. This may be offset to some extent by the effect of a branched structure of multimers on the standard volume of association. However, such compensation should be negligible in the dilute alkanol region where the degree of association is low and only small multimers (such as a dimer and trimer) are present. The disruption of alkanol aggregates is also more pronounced at low concentration, as the probability of contact and subsequent interactions with other unlike molecules (alkane in this case) is higher. This causes the shape of the $V_{\rm m}^{\rm E}$ of (alkanol + alkane) to be asymmetric, with the maximum being shifted toward lower x_1 as observed in $(C_4H_9OH + C_{16}H_{34})$. On the other hand, the presence of nonspecific physical interactions between the real species present in the mixture (alkane molecules, alkanol monomers, and multimers) also contributes to the positive $V_{\rm m}^{\rm E}$. It appears that these terms comprise the major part of the positive contributions to $V_{\rm m}^{\rm E}$ over much of the mole fraction range.

The composition dependence of Δu vs φ_1 is shown in Figure 2a, b. The Δu values are negative for both the mixtures. A minima at $\varphi_1 \approx 0.3$ appears in Δu curves for (C₄H₉OH + C₁₆H₃₄), whereas for (C₄H₉OH + C₃₀H₆₂), almost a constant variation of Δu vs φ_1 is observed in the range of $0.25 \le \varphi_1 \le 0.7$. An increase in temperature makes Δu values more negative. Like $V_m^{\text{ E}}$, $\Delta \kappa_s$ values (Figure 3a, b) are positive for both the mixtures. The trend observed in $\Delta \kappa_s$ is also similar to Δu but

Table 5. Coefficients of the Fitting Equation (Equation 5) and the Standard Deviations (σ) for ($x_1C_4H_9OH + x_2C_{16}H_{34}$) and ($x_1C_4H_9OH + x_2C_{30}H_{62}$) Binary Mixtures

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	σ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)034
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	l
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)03
$\Delta u/m \cdot s^{-1}$ -43.9 20.7 -14.7 37.0 -25.1 0.2)034
	2
$\Delta \kappa_s / \text{TPa}^{-1}$ 52.1 -27.4 13.2 -46.5 37.8 0.3	3
$\Delta \eta / m Pa \cdot s = -0.574 - 0.125 - 0.384 - 0.102 - 0.392 0.00$)04
$308.15 V^{\text{E}} \cdot 10^6 \text{ /m}^3 \cdot \text{mol}^{-1} \qquad 1.9445 \qquad -0.4972 \qquad 0.4138 \qquad -1.0861 \qquad 0.00$)027
$\Delta u/m \cdot s^{-1}$ -45.2 21.9 -16.0 35.7 -31.9 0.2	2
$\Delta \kappa_s / \text{TPa}^{-1}$ 57.8 -29.9 13.4 -48.0 51.1 0.3	3
$\Delta \eta/mPa \cdot s = -0.506 - 0.044 - 0.253 0.037 - 0.397 0.000$)03
$x_1C_4H_9OH + x_2C_{30}H_{62}$ 298.15 $V^{\text{E}} \cdot 10^6 \text{ /m}^3 \cdot \text{mol}^{-1}$ 1.9699 0.0463 0.9550 -0.6938 0.4611 0.00)029
$\Delta u/m \cdot s^{-1}$ -43.8 12.9 -3.6 29.8 -47.0 0.3	3
$\Delta \kappa_s / \text{TPa}^{-1}$ 29.3 -11.2 1.5 -29.2 53.0 0.3	3
$\Delta \eta / m Pa \cdot s = -0.862 = 4.069 = -6.898 = 0.00$)03
303.15 $V^{\text{E}} \cdot 10^{6} / \text{m}^{3} \cdot \text{mol}^{-1}$ 2.4138 0.2180 1.3951 0.0307 0.6697 0.00)034
$\Delta u/m \cdot s^{-1}$ -50.6 6.5 -16.8 25.8 -45.8 0.3	3
$\Delta \kappa_{\rm s}/{\rm TPa^{-1}}$ 42.4 -1.8 15.4 -24.3 59.4 0.4	ŧ
$\Delta \eta$ /mPa·s 0.098 3.265 -3.697 0.522 -1.402 0.00)03
$308.15 V^{\text{E}} \cdot 10^{6} / \text{m}^{3} \cdot \text{mol}^{-1}$ 2.6257 0.2292 1.5408 -0.4087 0.9894 0.00)036
$\Delta u/m \cdot s^{-1}$ -52.8 5.6 -16.6 31.5 -47.0 0.3	3
$\Delta \kappa_s / \text{TPa}^{-1}$ 47.4 0.2 11.3 -33.5 72.3 0.6	j
$\Delta \eta / m Pa \cdot s$ 0.311 3.189 -4.043 0.00)03

opposite in sign. Positive deviations in $\Delta \kappa_s$ values suggest the presence of weak dispersive interactions among the component molecules in the mixture.

The variation of $\Delta \eta$ vs x_1 is given in Figure 4a, b. The $\Delta \eta$ values are negative (C₄H₉OH + C₁₆H₃₄), while W-shaped behavior is observed for (C₄H₉OH + C₃₀H₆₂). The W-shaped

Figure 2. Deviation in speed of sound, Δu , at \blacksquare , 298.15 K; \blacklozenge , 303.15 K; and \blacktriangle , 308.15 K for the binary mixtures of $x_1C_4H_9OH + x_2C_nH_{2n+1}$: (a) n = 16 and (b) n = 30. The solid curves have been derived from eq 5.

Figure 3. Deviation in isentropic compressibility, $\Delta \kappa_s$, at \blacksquare , 298.15 K; \bullet , 303.15 K; and \blacktriangle , 308.15 K for the binary mixtures of $x_1C_4H_9OH + x_2C_nH_{2n+1}$: (a) n = 16 and (b) n = 30. The solid curves have been derived from eq 5.

Table 6. Characteristic Parameters for the Pure Components at Several Temperatures Used in PFP Theory Calculations

		$\alpha \cdot 10^3$	κ_{T}	C_P			$V^* \cdot 10^6$	$10^{6} P^{*}$	T^*
components	<i>T</i> /K	K^{-1}	TPa^{-1}	$\overline{J \cdot K^{-1} \cdot mol^{-1}}$	\tilde{v}	\tilde{T}	$\overline{\mathrm{m}^{3}\cdot\mathrm{mol}^{-1}}$	$J \cdot m^{-3}$	K
C ₄ H ₉ OH	298.15	0.932^{44}	942.0 ⁴⁴	177.12 ²²	1.2336	0.0548	74.5581	448.89	5441
	303.15	0.939 ³⁹	949.0 ³⁹	178.88^{22}	1.2388	0.0556	74.5007	460.30	5451
	308.15	0.952^{a}	998.3 ^b	180.60^{22}	1.2444	0.0565	74.5263	455.07	5455
C ₁₆ H ₃₄	298.15	0.887^{a}	861.8 ^b	501.60 ⁴⁷	1.2241	0.0532	240.1106	459.80	5600
10 51	303.15	0.894^{a}	905.0 ⁴⁵	504.30°	1.2287	0.0540	240.2808	452.14	5613
	308.15	0.900^{a}	917.0 ⁴⁶	507.15^{46}	1.2332	0.0547	240.4950	459.95	5630
$C_{30}H_{62}$	298.15	0.758^{10}	740.0 ¹⁰	904.00^{48}	1.1958	0.0484	439.1806	436.41	6162
50 02	303.15	0.764^{10}	750.0 ¹⁰	904.75^{48}	1.2000	0.0491	439.3787	444.56	6169
	308.15	0.770^{10}	760.0^{10}	905.83 ⁴⁸	1.2043	0.0499	439.5793	452.80	6176

^{*a*} Derived from our measured densities. ^{*b*} Calculated from $\kappa_{\rm T} = 1/(\rho u^2) + TV\alpha^2/C_{\rho}$. ^{*c*} Estimated using group additivity.

Table 7. PFP Interaction Parameter, x_{12} , and Calculated Values of the Three Contributions from the PFP Theory with Experimental Excess Molar Volumes at $x_1 = 0.5$

	Т	$\chi_{12} \cdot 10^6$	$V_{\rm m}^{\rm E} \cdot 10^{6}$	$m^3 \cdot mol^{-1}$	cale	culated contribution	ons
binary mixtures	K	J•m ⁻³	exptl	PFP	$V_{\rm m}^{\rm E}$ (int.)	$V_{\rm m}^{\ \rm E}$ (fv)	$V_{\rm m}^{\rm E}$ (ip)
$x_1C_4H_9OH + x_2C_{16}H_{34}$	298.15	19.32	0.3489	0.3490	0.3592	-0.0038	-0.0065
	303.15	23.02	0.4456	0.4457	0.4448	-0.0043	0.0051
	308.15	25.11	0.4861	0.4862	0.4948	-0.0053	-0.0034
$x_1C_4H_9OH + x_2C_{30}H_{62}$	298.15	28.62	0.4925	0.2210	0.5286	-0.0705	0.0343
	303.15	33.94	0.6035	0.6027	0.6339	-0.0725	0.0421
	308.15	38.33	0.6564	0.6568	0.7277	-0.0777	0.0064

curves have two regions of negative curvature separated by a region of a positive one. This is a consequence of two opposite contributions: a positive contribution to $\Delta \eta$ (the so-called

nonrandom contribution) transferring into a parabolic negative curve (the so-called random contribution). As can be seen in Figure 4b, the randomness, being predominant from $x_1 = 0$ to 0.3 and 0.75 to 1, results from the disruption of the molecular

Figure 4. Viscosity deviations, $\Delta \eta$, at \blacksquare , 298.15 K; \bullet , 303.15 K; and \blacktriangle , 308.15 K for the binary mixtures of $x_1C_4H_9OH + x_2C_nH_{2n+1}$: (a) n = 16 and (b) n = 30. The solid curves have been derived from eq 5.

Figure 5. Variation of speed of sound, *u*, at **II**, 298.15 K; **•**, 303.15 K; and **•**, 308.15 K for the binary mixtures of $x_1C_4H_9OH + x_2C_nH_{2n+1}$: (a) n = 16 and (b) n = 30. The dotted (-----) curves have been derived from the PFP theory.

Figure 6. Variation of isentropic compressibility, κ_s , at \blacksquare , 298.15 K; \bullet , 303.15 K; and \blacktriangle , 308.15 K for the binary mixtures of $x_1C_4H_9OH + x_2C_nH_{2n+1}$: (a) n = 16 and (b) n = 30. The dotted (-----) curves have been derived from the PFP theory.

order of the dilute component; i.e., the molecules of the dilute component are separated and randomly distributed in the component of higher concentration. However, for range from $x_1 = 0.3$ to $x_1 = 0.75$, a positive contribution to $\Delta \eta$ is observed (nonrandomness) that results from the possible attractive van der Waals molecular interactions: attractions between permanent dipoles, between permanent and induced dipoles, and dispersive interactions. The viscosity of a mixture strongly depends on the entropy of the mixture and is related to the liquid structure and enthalpy. Thus, $\Delta \eta$ are functions of interactions as well as the size and shape of the participating molecules.³⁸ It is also clear from Figure 4b that the W-shape becomes less pronounced at higher temperatures. Thus, broadly speaking, the molecular interactions analyzed earlier on the basis of relative magnitude of V_m^E and $K_{s,m}^E$ are also consistent with viscosity behavior.

Theoretical Analysis. The Prigogine–Flory–Patterson (PFP) theory has been applied to predict and correlate the $V_{\rm m}^{\rm E}$, whereas the PFP theory with the van der Waals (vdW) potential energy model is used for theoretical estimation of u and $\kappa_{\rm s}$ of these systems. The relevant equations are given elsewhere.^{39–47} Table 6 contains characteristic parameters for the pure components at several temperatures used in PFP theory calculations. Table 7 reports interaction parameter, χ_{12} , and the calculated and experimental values of $V_{\rm m}^{\rm E}$ at $x_1 = 0.5$. Figures 1a, b, 5a, b, and 6a, b show the comparison between the experimental and calculated $V_{\rm m}^{\rm E}$, u, and $\kappa_{\rm s}$ values. It is clear from the figures that PFP cannot predict the experimental data quite satisfactorily. This is not surprising as PFP theory does not consider all the

Table 8. Comparison of Experimental and Calculated Values of the Speeds of Sound, u, and Isentropic Compressibility, κ_s , of Binary Mixtures at $x_1 = 0.5$ and Standard Percentage Deviation

	Т	и	$/m \cdot s^{-1}$		ĸ	/TPa ⁻¹	I
binary mixtures	K	exptl	vdW	σ %	exptl	vdW	σ %
$x_1C_4H_9OH + x_2C_{16}H_{34}$	298.15	1304.4	1313.9	0.5	756.2	743.6	1.1
	303.15	1285.8	1290.1	0.7	781.7	774.7	1.4
	308.15	1267.4	1280.1	0.7	808.4	790.5	1.6
$x_1C_4H_9OH + x_2C_{30}H_{62}$	298.15	1351.1	1367.8	0.9	681.6	664.8	2.0
	303.15	1333.1	1363.5	2.1	702.9	670.9	4.2
	308.15	1315.3	1355.9	2.8	725.2	680.8	5.5

possible interactions taking place in the liquid mixture. The experimental and calculated values of *u* and κ_s at $x_1 = 0.5$ are given in Table 8 along with the standard percentage deviations ($\sigma \%$).

Conclusions

This paper reports new measurements of density, speed of sound, and viscosity at (298.15, 303.15, and 308.15) K over the entire range of mixture compositions for $C_4H_9OH + C_{16}H_{34}$ or, $+ C_{30}H_{62}$ systems. The values of excess molar volumes and isentropic compressibility show positive deviations, whereas a negative trend is observed for viscosity deviations and deviations in speed of sound for the studied binary systems. These parameters provide support for the existence of weak dispersive interactions among the component molecules in the mixtures. Further, the applicability of PFP theory for the excess molar volumes in the studied systems has also been checked, and it is found that the results are not satisfactory. It concludes that there is a strong self-association between alcohol molecules which prevent the alcohol–alkane interactions.

Literature Cited

- (1) Croucher, M. D.; Patterson, D. Thermodynamic effects of orientational order in chain molecule mixtures. Part 2- Temperature dependence of heats of mixing of branched and normal alkane mixtures. J. Chem. Soc. Faraday Trans. II 1974, 70, 1479–1487.
- (2) Marsh, K. N.; Organ, P. P. Excess molar enthalpies and excess volumes for three and four-component n-alkane mixtures simulatingn-hexane + n-hexadecane). J. Chem. Thermodyn. 1985, 17, 835–841.
- (3) Wakefield, D. L.; Marsh, K. N. Viscosities of non-electrolyte liquid mixtures. I. n-hexadecane + n-octane. *Int. J. Thermophys.* 1987, 8, 649–662.
- (4) Copper, E. F.; Asfour, A.-F. A. Densities and kinematic viscosities of some C6-C16 n-alkane binary liquid systems at 293.15 K. J. Chem. Eng. Data 1991, 36, 285–288.
- (5) Kumagai, A.; Takahashi, S. Viscosity and density of liquid mixtures of n-alkane with squalane. *Int. J. Thermophys.* **1995**, *16*, 773–779.
- (6) Fermegila, M.; Torriano, G. Density, viscosity, and refractive index for binary systems of n-hexadecane and four nonlinear alkanes at 298.15 K. J. Chem. Eng. Data 1999, 44, 965–969.
- (7) Lal, K.; Tripathi, N.; Dubey, G. P. Densities, viscosities and refractive indices of binary liquid mixtures of hexane, decane, hexadecane and squalane with benzene at 298.15 K. J. Chem. Eng. Data 2000, 45, 961–964.
- (8) Ball, S. J.; Trusler, J. P. M. Speed of sound of n-hexane and n-hexadecane at temperatures between 298 and 373 K and pressures up to 100 MPa. *Int. J. Thermophys.* 2001, 22, 427–443.
- (9) Bolotnikov, M. F.; Neruchev, Y. A.; Melikhov, Y. F.; Verveyko, V. N.; Verveyko, M. V. Temperature dependence of speed of sound, densities, and isentropic compressibilities of hexane + hexadecane in range of (293.15 to 373.15) K. J. Chem. Eng. Data 2005, 50, 1095–1098.
- (10) Kumagai, A.; Tomida, D.; Yokoyama, C. Measurement o the liquid viscosities of mixtures of n-butane, n-hexane, and n-octane with squalane to 30 MPa. *Int. J. Thermophys.* 2006, 27, 376–392.
- (11) Litova, N. A.; Korolev, V. P. Enthalpy of solution of squalane in alcohols. *Russ. J. Gen. Chem.* 2001, 71, 702–706.
- (12) Mehera, R. Application of refractive index mixing rules in binary systems of hexadecane and heptadecane with n-alkanols at different temperatures. *Proc. Indian Acad. Sci. (Chem. Sci.)* 2003, *115*, 147– 154.

- (13) Mehra, R.; Israni, R. Effect of Temperature on excess molar volumes of binary mixtures of hexadecane and butanol. *Indian J. Pure Appl. Phys.* 2000, *38*, 81–82.
- (14) Mehra, R.; Israni, R. A new approach to collision factor theory applied to binary and ternary liquid mixtures at different temperatures. *Indian J. Chem.* 2004, 43A, 743–747.
- (15) Canosa, J.; Rodriguez, A.; Tojo, J. Speeds of sound and dynamic viscosities of the ternary mixtures methyl acetate + methanol + 1-butanol or 1-pentanol and their corresponding binary mixtures at 298.15 K. J. Chem. Eng. Data 2000, 45, 471–477.
- (16) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents: Physical Properties and Method of Purification, 4th ed.; John Wiley & Sons: New York, 1986.
- (17) Gonzalez, B.; Calvar, N.; Dominguez, A.; Tojo, J. Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at *T*=(293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameter. *J. Chem. Thermodyn.* **2007**, *39*, 322–334.
- (18) Gurung, B. B.; Roy, M. N. Study of densities, viscosities and ultrasonic speeds of binary mixtures containing 1, 2-dimethoxyethane and alkan-1-ol at 298.15 K. J. Solution Chem. 2006, 35, 1587–1606.
- (19) TRC Thermodynamic Tables. Hydrocarbon; Thermodynamic Research Center, Texas A & M University: College Station, TX, 1998.
- (20) Pan, I.; Tang, M.; Chen, Y. Densities and viscosities of binary liquid mixtures of venyl acetate, diethyl oxalate and dibutyl phthalate with n-alkanols at 303.15 K. J. Chem. Eng. Data 2000, 45, 1012–1015.
- (21) Aminabhavi, T. M.; Aralaguppi, M. I.; Harogoppad, S. B.; Balundgi, R. H. Densities, viscosities, refractive indices and speeds of sound for methyl acetoacetate + aliphatic alcohols (C1-C8). J. Chem. Eng. Data 1993, 38, 31–39.
- (22) Troncoso, J.; Valencia, J. L.; Souto-Caride, M.; Gonzalez-Salgado, D.; Peleteiro, J. Thermodynamic properties of dodecane + 1-butanol and + 2-butanol systems. J. Chem. Eng. Data 2004, 49, 1789–1793.
- (23) Nikam, P. S.; Shirsat, L. N.; Hasan, M. Density, viscosity studies of binary mixtures of acetonitrile with methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, 2- methylpropan-1-ol, 2-methylpropan-2-ol at (298.15, 303.15, 308.15 and 313.15) K. J. Chem. Eng. Data 1998, 43, 732–737.
- (24) Baragi, J. G.; Aralaguppi, M. I.; Aminabhavi, T. M.; Kariduraganavar, M. Y.; Kulkarni, S. S. Density, viscosity, refractive index, and speed of sound for binary mixtures of 1,4-Dioxane with different organic liquids at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 2005, 50, 917–923.
- (25) Wilhelm, E.; Inglese, A.; Roux, A. H.; Grolier, J. P. Excess enthalpy, excess heat capacity and excess volumes of 1,2,4-trimethylbenzene +, and 1-methylnaphthalene + an n-alkane. *Fluid Phase Equilib.* **1987**, 34, 49–67.
- (26) Yoshikawa, H.; Kanahira, T.; Kato, M. Solubility and liquid density behavior for two binary systems of 2, 2, 4- trimethylpentane with methanol or nitroethane. *Fluid Phase Equilib.* **1994**, *94*, 255–256.
- (27) Khasanshin, T.; Shchemelev, A. Sound velocity in liquid n-alkanes. *High Temp.* 2001, 39, 60–68.
- (28) Aminabhavi, T. M.; Gopalkrishna, B. Densities, viscosities and refractive indices and speed of sound of the binary mixtures of bis(2methoxyethyl)ether with nonane, decane, dodecane, tetradecane and hexadecane at 298.15, 308.15 and 318.15 K. J. Chem. Eng. Data 1994, 39, 529–534.
- (29) Fandino, O.; Pensado, A. S.; Lugo, L.; Comunas, M. J. P.; Fernandez, J. Compressed liquid densities of squalane and Pentaerythritol tetra (2-ethylhexanoate). J. Chem. Eng. Data 2005, 50, 939–946.
- (30) Dubey, G. P.; Sharma, M.; Dubey, N. Study of densities, viscosities and speeds of sound of binary liquid mixtures of butan-1-ol with

n-alkanes (C6, C8, C10) at (298.15, 303.15 and 308.15) K. J. Chem. Thermodyn. 2008, 40, 309–320.

- (31) Kell, G. S. Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data **1967**, 12, 66–69.
- (32) Del Grosso, V. A.; Mader, C. W. Speed of Sound in Pure Water. J. Acoust. Soc. Am. 1992, 52, 1442–1446.
- (33) Dubey, G. P.; Sharma, M. Thermophysical properties of binary mixtures 2-methyl- 1- propanol with hexane, octane and decane at 298.15 K. J. Chem. Eng. Data 2007, 52, 449–453.
- (34) Dubey, G. P.; Sharma, M. Volumetric, viscometric and acoustic properties of binary mixtures of 2-propanol with n-alkanes (C6, C8, C10) at 298.15 and 308.15 K. *Phys. Chem. Liq.*, In press.
- (35) Aminabhavi, T. M.; Patil, V. B.; Aralaguppi, M. I.; Phayde, H. T. S. Density, viscosity, and refractive index of the binary mixtures of cyclohexane with hexane, heptane, octane, nonane, and decane at (298.15, 303.15 and 308.15) K. J. Chem. Eng. Data 1996, 41, 521–525.
- (36) Aralaguppi, M. I.; Baragi, J. G. Physico-chemical and excess properties of the binary mixtures of metylcyclohexane + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methyl-1-propanol, or 3-metyl-1-butanol at *T* = (298.15, 303.15 and 308. K. *J. Chem. Thermodyn.* 2006, *38*, 434–442.
- (37) Redlich, O.; Kister, A. T. Algebric Representation of thermodynamic properties and the classification of solutions. *Ind. Eng. Chem.* **1948**, 40, 345–348.
- (38) Kauzman, W.; Eyring, H. The viscous flow of large molecules. J. Am. Chem. Soc. **1940**, 62, 3113–3125.
- (39) Torres, R. B.; Francesconic, A. Z.; Volpe, P. L. O. Thermodynamics of binary liquid mixtures: Application of the PFP theory to excess molar volumes of acetonitrile+1- alkanol systems. *J. Mol. Liq.* 2004, *110*, 81–85.
- (40) Flory, P. J. Statistical Thermodynamics of liquid mixtures. J. Am. Chem. Soc. 1965, 87, 1833–1838.
- (41) Abe, A.; Flory, P. J. The thermodynamic properties of mixtures of small, nonpolar molecules. J. Am. Chem. Soc. **1965**, 87, 1838–1846.
- (42) Patterson, D.; Delmas, G. Corresponding state theories and liquid models. *Discuss. Faraday Soc.* **1970**, *49*, 98–105.
- (43) Oswal, S. L. Theoretical estimation of isentropic compressibility and speed of sound in binary liquid mixtures from the Prigogine-Flory-Patterson theory. *Acoust. Lett.* **1990**, *14*, 17–25.
- (44) Funke, H.; Wetzel, M.; Heintz, A. New application of the ERAS model. Thermodynamics of amine + alkane, and alcohol + amine mixtures. *Pure Appl. Chem.* **1989**, *61*, 1429–1439.
- (45) Pandey, J. D.; Pant, N. Surface tension of ternary polymeric solutions. J. Am. Chem. Soc. 1982, 104, 3299–3302.
- (46) Cerdeirina, C. A.; Tovar, C. A.; Gonzalez-Salgado, D.; Carballo, E.; Romani, L. Isobaric thermal expansivity and thermophysical characterization of liquids and liquid mixtures. *Phys. Chem. Chem. Phys.* 2001, *3*, 5230–5236.
- (47) Lide, D. R. *CRC Handbook of Chemistry and Physics*, 80th ed.; Taylor and Francis: New York, 2005.
- (48) Durupt, N.; Aoulmi, A.; Bouroukba, M.; Rogalski, M. Heat capacities of liquid long-chain alkanes. *Thermochim. Acta* **1996**, 274, 73–80.

Received for review December 30, 2007. Accepted February 5, 2008. The authors wish to express their gratitude to the University Grants Commission, New Delhi, India, for providing financial support for this work (Grant No. F.30-58/2004-SR dated 02/11/04).

JE7007654